Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(9): 092501, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489643

RESUMEN

Three ΔI=1 bands with the πg_{9/2}⊗νg_{9/2} configuration have been identified in _{35}^{74}Br_{39}. Angular distribution, linear polarization, and lifetime measurements were performed to determine the multipolarity, type, mixing ratio, and absolute transition probability of the transitions. By comparing these experimental observations with the corresponding fingerprints and the quantum particle rotor model calculations, the second and third lowest bands are, respectively, suggested as the chiral partner and one-phonon wobbling excitation built on the yrast band. The evidence indicates the first chiral wobbler in nuclei.

2.
Phys Rev Lett ; 116(11): 112501, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035296

RESUMEN

Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in ^{78}Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei.

3.
Phys Rev Lett ; 104(16): 162501, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482043

RESUMEN

A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

4.
Phys Rev Lett ; 104(2): 022501, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20366588

RESUMEN

Negative-parity bands in the vicinity of 156Gd and 160Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in 160Yb and 154Gd. The properties of these bands are similar to the proposed tetrahedral band of 156Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for 160Yb and 154Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.

5.
Phys Rev Lett ; 86(13): 2746-9, 2001 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-11290029

RESUMEN

The linear polarization of gamma rays between excited and yrast superdeformed (SD) states in 190Hg was measured using the four-element CLOVER detectors of the EUROBALL IV gamma-ray spectrometer. This measurement shows in a model-independent way that the interband transitions which compete with the highly collective in-band quadrupole transitions are largely enhanced electric dipoles. Not only do these results represent the first measurement of the multipolarity of transitions between different SD states, but they also provide strong evidence for the interpretation of the structures in the SD minimum of the A approximately 190 region in terms of octupole excitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...